翻訳と辞書
Words near each other
・ Connectify
・ Connectify Hotspot
・ Connecting Futures
・ Connecting Link
・ Connecting Railway
・ COnnecting REpositories
・ Connecting rod
・ Connecting Rooms
・ Connecting Slough
・ Connecting Spirits
・ Connecting stalk
・ Connecting tubule
・ Connection
・ Connection (affine bundle)
・ Connection (album)
Connection (algebraic framework)
・ Connection (composite bundle)
・ Connection (dance)
・ Connection (Don Ellis album)
・ Connection (Elastica song)
・ Connection (EP)
・ Connection (fibred manifold)
・ Connection (mathematics)
・ Connection (principal bundle)
・ Connection (The Rolling Stones song)
・ Connection (vector bundle)
・ Connection broker
・ Connection Collection, Vol. 1
・ Connection Distributing Co. v. Holder
・ Connection form


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Connection (algebraic framework) : ウィキペディア英語版
Connection (algebraic framework)
Geometry of quantum systems (e.g.,
noncommutative geometry and supergeometry) is mainly
phrased in algebraic terms of modules and
algebras. Connections on modules are
generalization of a linear connection on a smooth vector bundle E\to
X written as a Koszul connection on the
C^\infty(X)-module of sections of E\to
X.〔Koszul (1950)〕
== Commutative algebra ==

Let A be a commutative ring
and P a A-module. There are different equivalent definitions
of a connection on P.〔Koszul (1950), Mangiarotti
(2000)〕 Let D(A) be the module of derivations of a ring A. A
connection on an A-module P is defined
as an A-module morphism
: \nabla:D(A)\ni u\to \nabla_u\in \mathrm_1(P,P)
such that the first order differential operators \nabla_u on
P obey the Leibniz rule
: \nabla_u(ap)=u(a)p+a\nabla_u(p), \quad a\in A, \quad p\in
P.
Connections on a module over a commutative ring always exist.
The curvature of the connection \nabla is defined as
the zero-order differential operator
: R(u,u')=()-\nabla_ \,
on the module P for all u,u'\in D(A).
If E\to X is a vector bundle, there is one-to-one
correspondence between linear
connections
\Gamma on E\to X and the
connections \nabla on the
C^\infty(X)-module of sections of E\to
X. Strictly speaking, \nabla corresponds to
the covariant differential of a
connection on E\to X.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Connection (algebraic framework)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.